Published in

Springer (part of Springer Nature), Journal of Molecular Modeling, 9(21)

DOI: 10.1007/s00894-015-2770-6

Links

Tools

Export citation

Search in Google Scholar

The performance of methallyl nickel complexes and boron adducts in the catalytic activation of ethylene: a conceptual DFT perspective

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, global and local descriptors of chemical reactivity and selectivity are used to explain the differences in reactivities toward ethylene of methallyl nickel complexes and their B(C6F5)3 and BF3 adducts. DFT calculations were used to explain why nickel complexes alone are inactive in ethylene polymerization while their boron adducts can activate it. It is shown that chemical potential, hardness, electrophilicity and molecular electrostatic potential surfaces describe fairly well the reactivity and selectivity of these organometallic systems toward ethylene. Experimental data indicates that addition of a borane molecule to nickel complexes changes dramatically their reactivity-behavior that is confirmed computationally. Our results show that bare complexes are unable to activate ethylene-a Lewis base-because they also behave as Lewis bases. The addition of the co-catalyst-a Lewis acid-turns the adducts into Lewis acids, making them active towards ethylene.