Published in

2008 IEEE International Symposium on Parallel and Distributed Processing with Applications

DOI: 10.1109/ispa.2008.19

Links

Tools

Export citation

Search in Google Scholar

Parallelism without Pain: Orchestrating Computational Algebra Components into a High-Performance Parallel System

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper describes a very high-level approach that aims to orchestrate sequential components written using high-level domain-specific programming into high-performance parallel applications. By achieving this goal, we hope to make parallel programming more accessible to experts in mathematics, engineering and other domains. A key feature of our approach is that parallelism is achieved without any modification to the underlying sequential computational algebra systems, or to the user-level components: rather, all orchestration is performed at an outer level, with sequential components linked through a standard communication protocol, the Symbolic Computing Software Composability Protocol, SCSCP. Despite the generality of our approach, our results show that we are able to achieve very good, and even, in some cases, super-linear, speedups on clusters of commodity workstations: up to a factor of 33.4 on a 28-processor cluster. We are, moreover, able to parallelise a wider variety of problem, and achieve higher performance than typical specialist parallel computational algebra implementations.