Published in

American Association for Cancer Research, Cancer Research, 22(66), p. 10683-10690, 2006

DOI: 10.1158/0008-5472.can-06-0963

Elsevier, Urologic Oncology: Seminars and Original Investigations, 1(26), p. 108

DOI: 10.1016/j.urolonc.2007.11.022

Links

Tools

Export citation

Search in Google Scholar

Decreased NKX3.1 Protein Expression in Focal Prostatic Atrophy, Prostatic Intraepithelial Neoplasia, and Adenocarcinoma: Association with Gleason Score and Chromosome 8p Deletion

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract NKX3.1 is a homeobox gene located at chromosome 8p21.2, and one copy is frequently deleted in prostate carcinoma. Prior studies of NKX3.1 mRNA and protein in human prostate cancer and prostatic intraepithelial neoplasia (PIN) have been conflicting, and expression in focal prostate atrophy lesions has not been investigated. Immunohistochemical staining for NKX3.1 on human tissue microarrays was decreased in most focal atrophy and PIN lesions. In carcinoma, staining was inversely correlated with Gleason grade. Fluorescence in situ hybridization showed that no cases of atrophy had loss or gain of 8p, 8 centromere, or 8q24 (C-MYC) and only 12% of high-grade PIN lesions harbored loss of 8p. By contrast, NKX3.1 staining in carcinoma was correlated with 8p loss and allelic loss was inversely related to Gleason pattern. Quantitative reverse transcription-PCR for NKX3.1 mRNA using microdissected atrophy revealed a concordance with protein in five of seven cases. In carcinoma, mRNA levels were decreased in 6 of 12 cases but mRNA levels correlated with protein levels in only 4 of 12 cases, indicating translational or post-translational control. In summary, NKX3.1 protein is reduced in focal atrophy and PIN but is not related to 8p allelic loss in these lesions. Therefore, whereas genetic disruption of NKX3.1 in mice leads to PIN, nongenetic mechanisms reduce NKX3.1 protein levels early in human prostate carcinogenesis, which may facilitate both proliferation and DNA damage in atrophic and PIN cells. Monoallelic deletions on chromosome 8p are associated with more advanced invasive and aggressive disease. (Cancer Res 2006; 66(22): 10683-90)