Published in

American Association of Immunologists, The Journal of Immunology, 11(191), p. 5636-5645, 2013

DOI: 10.4049/jimmunol.1301536

Links

Tools

Export citation

Search in Google Scholar

Sialylation of Campylobacter jejuni endotoxin promotes dendritic cell-mediated B cell responses through CD14-dependent production of IFN-β and TNF-α

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Campylobacter jejuni is the most common bacterial cause of human gastroenteritis and often precedes development of Guillain–Barré syndrome (GBS), a life-threatening paralytic disease. The incorporation of the carbohydrate sialic acid into C. jejuni lipooligosaccharides (LOS) is associated with increased severity of gastroenteritis and with induction of GBS; however, the underlying mechanisms remain completely unknown. In this study, we demonstrate that sialic acids in C. jejuni endotoxin enhance the rapid production of IFN-β and TNF-α by human dendritic cells (DCs). Using neutralizing Abs and receptors it was shown that these DC-derived cytokines promote the proliferation of human mucosal B cells in a T cell–independent manner. The production of both IFN-β and TNF-α by DCs in response to LOS requires CD14, and the amplified response of DCs to sialylated C. jejuni LOS is CD14 dependent. Together, these results indicate that sialylation of C. jejuni LOS increases DC activation and promotes subsequent B cell responses through CD14-driven production of IFN-β and TNF-α. This enhanced DC/B cell response may explain the increased pathogenicity of sialylated C. jejuni and may be key to the initiation of B cell–mediated autoimmunity in GBS.