Published in

Springer Verlag, Psychopharmacology, 7(232), p. 1325-1336

DOI: 10.1007/s00213-014-3770-4

Links

Tools

Export citation

Search in Google Scholar

Lithium and GSK-3β promoter gene variants influence cortical gray matter volumes in bipolar disorder

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Rationale Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase-3β (GSK-3β). The less active GSK-3β promoter gene variants have been associated with less detrimental clinical features of BD. GSK-3β gene variants and lithium can influence brain gray and white matter structure in psychiatric conditions, so we studied their combined effect in BD. Objectives The aim of this study is to investigate the effects of ongoing long-term lithium treatment and GSK-3β promoter rs334558 polymorphism on regional gray matter (GM) volumes of patients with BD. Materials and methods GM volumes were estimated with 3.0 Tesla MRI in 150 patients affected by a major depressive episode in course of BD. Duration of lifetime lithium treatment was retrospectively assessed. Analyses were performed by searching for significant effects of lithium and rs334558 in the whole brain. Results The less active GSK-3β rs334558*G gene promoter variant and the long-term administration of lithium were synergistically associated with increased GM volumes in the right frontal lobe, in a large cluster encompassing the boundaries of subgenual and orbitofrontal cortex (including Brodmann areas 25, 11, and 47). Effects of lithium on GM revealed in rs334558*G carriers only, consistent with previously reported clinical effects in these genotype groups, and were proportional to the duration of treatment. Conclusions Lithium and rs334558 influenced GM volumes in areas critical for the generation and control of affect, which have been widely implicated in the process of BD pathophysiology. In the light of the protective effects of lithium on white matter integrity, our results suggest that the clinical effects of lithium associate with a neurotrophic effect on the whole brain, probably mediated by GSK-3β inhibition.