Published in

Springer (part of Springer Nature), Environmental Science and Pollution Research, 15(21), p. 9415-9429

DOI: 10.1007/s11356-014-2849-0

Links

Tools

Export citation

Search in Google Scholar

Contribution of harbour activities and ship traffic to PM2.5, particle number concentrations and PAHs in a port city of the Mediterranean Sea (Italy)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, an assessment of the impact of ship traffic and related harbour activities (loading/unloading of ships and hotelling in harbour) on PM 2.5 and particle number concentrations (PNC) separating the contribution associated to ship traffic from that of harbour-related activities is reported. Further, an assessment of the impact and environmental risks associated to polycyclic aromatic hydrocarbon (PAH) concentrations was performed. Results refer to the city of Brindisi (88,500 inhabitants) in the south-eastern part of Italy and its harbour (with yearly 9.5 Mt of goods, over 520,000 passengers and over 175,000 vehicles). PM2.5 and PNC concentrations show a clear daily pattern correlated with daily ship traffic pattern in the harbour. High temporal resolution measurements and correlations with wind direction were used to estimate the average direct contribution to measured concentrations of this source. The average relative contribution of ship traffic was 7.4 % (±0.5 %) for PM2.5 and 26 % (±1 %) for PNC. When the contribution associated to harbour-related activities is added, the percentages become 9.3 % (±0.5 %) for PM2.5 and 39 % (±1 %) for PNC. In the site analysed, air coming from the harbour/industrial sector was richer in PAHs (5.34 ng/m(3)) than air sampled from all directions (3.89 ng/m(3)). The major compounds were phenanthrene, fluoranthene and pyrene, but the congener profiles were different in the two direction sectors: air from the harbour/industrial sector was richer in phenanthrene and fluorene, which are the most abundant PAHs in ship emissions. Results showed that lighter PAHs are associated to the gas phase, while high molecular weight congeners are mostly present in the particulate phase. The impact on the site studied of the harbour/industrial source to PAHs was 56 % (range, 29-87 %).