Published in

Wiley, Physiologia Plantarum, 4(143), p. 375-384, 2011

DOI: 10.1111/j.1399-3054.2011.01510.x

Links

Tools

Export citation

Search in Google Scholar

Involvement of the abscisic acid catabolic gene CYP707A2 in the glucose-induced delay in seed germination and post-germination growth of Arabidopsis

Journal article published in 2011 by Guohui Zhu, Yinggao Liu, Nenghui Ye, Rui Liu, Jianhua Zhang ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Earlier studies showed that sugars as signaling molecules play pivotal roles in the regulation of seed germination. ABA biosynthesis upregulation is suggested as one of the possible mechanisms mediating the glucose-induced delay in seed germination. In this study, the role of ABA catabolism in glucose-induced inhibition was investigated. Using Arabidopsis thaliana seeds, the results show that the repression of ABA catabolism by diniconazole aggravated the glucose-induced delay in seed germination. The transcript and protein profiles of CYP707A2, a key gene encoding ABA 8'-hydroxylase in ABA catabolism in Arabidopsis, were significantly decreased by exogenous glucose treatment. Transgenic experiments confirmed that the over-expression of the CYP707A2 gene alleviated the glucose-induced inhibition effect, whereas the cyp707a2 mutant seeds displayed a hypersensitivity to glucose during imbibition. Exogenous glucose also arrested the early seedling development of Arabidopsis. The CYP707A2 over-expression seedlings exhibited lower ABA levels and seemed less sensitive to exogenous glucose compared with wild type seedlings. In summary, the glucose-induced delay in seed germination and seedling development is directly related to the suppression of ABA catabolism through the repression of the CYP707A2 expression.