Links

Tools

Export citation

Search in Google Scholar

Unrest within a large rhyolitic magma system at Laguna del Maule volcanic field (Chile) from 2007 through 2013: geodetic measurements and numerical models

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The Laguna del Maule (LdM) volcanic field is remarkable for its unusual concentration of post-glacial rhyolitic lava coulées and domes that erupted between 25 and 2 thousand years ago. Covering more than 100 square kilometers, they erupted from 24 vents encircling a lake basin approximately 20 km in diameter on the range crest of the Andes. Geodetic measurements at the LdM volcanic field show rapid uplift since 2007 over an area more than 20 km in diameter that is centered on the western portion of the young rhyolite domes. By quantifying this active deformation and its evolution with time, we aim to investigate the storage conditions and dynamic processes in the underlying rhyolitic reservoir that drive the ongoing inflation. Analyzing interferometric synthetic aperture radar (InSAR) data, we track the rate of deformation. The rate of vertical uplift is negligible from 2003 to 2004, accelerates from at least 200 mm/yr in 2007 to more than 300 mm/yr in 2012, and then decreases to 200mm/yr in early 2013. To describe the deformation, we use a simple model that approximates the source as a 8 km-by-6 km sill at a depth of 5 km, assuming a rectangular dislocation in a half space with uniform elastic properties. Between 2007 and 2013, the modeled sill increased in volume by at least 190 million cubic meters. Four continuous GPS stations installed in April 2012 around the lake confirm this extraordinarily high rate of vertical uplift and a substantial rate of radial expansion. As of June 2013, the rapid deformation persists in the InSAR and GPS data. To describe the spatial distribution of material properties at depth, we are developing a model using the finite element method. This approach can account for geophysical observations, including magneto-telluric measurements, gravity surveys, and earthquake locations. It can also calculate changes in the local stress field. In particular, a large increase in stress in the magma chamber roof could lead to the initiation and/or reactivation of the ring faults. Potential evidence for fault reactivation is the detection of diffuse soil degassing of CO2 with concentrations reaching 5-7% near the center of deformation. We therefore consider several hypotheses for the processes driving the deformation, including: (1) an intrusion of basalt into the base of a melt-rich layer of rhyolite leading to heating, bubble growth and subsequent increase pressure in the reservoir, and/or (2) inflation of a hydrothermal system above the rhyolite melt layer.