Published in

2009 IEEE Sensors

DOI: 10.1109/icsens.2009.5398336

Links

Tools

Export citation

Search in Google Scholar

Fiber Optic Bio-sniffer (Biochemical Gas Sensor) using UV-LED light for Monitoring Ethanol Vapor with High Sensitivity & Selectivitiy

Proceedings article published in 2009 by H. Kudo, K. Miyajima, D. Takahashi, T. Arakawa ORCID, H. Saito, K. Mitsubayashi, M. Sawai
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A fiber optic bio-sniffer (biochemical gas sensor) for alcohol gas monitoring with high sensitivity and high selectivity was fabricated and tested. The bio-sniffer is a gas sensor that uses molecular recognition of enzyme to improve selectivity. Usually, enzyme loses activity in the gas phase. Applying a flow-cell with a gas-intake window to the sensing probe, enzyme immobilized at the sensing region was kept in the sufficient wet condition to maintain activity. The bio-sniffer measures ethanol (EtOH) vapor by measuring fluorescence of nicotinamide adenine dinucleotide (NADH), which is produced by enzymatic reaction at the flow-cell. In order to construct a simplified system suitable for on-site applications, a high-intensity ultraviolet light emitting diode (UV-LED) was utilized as an excitation light. Owing to low power consumption comparing with previous light sources, the bio-sniffer was considered to be suitable for laptop applications such as on-site monitoring. According to the characterization, the bio-sniffer for was useful for continuous alcohol monitoring and showed high selectivity. The calibration range was 0.30-300 ppm which is suitable for evaluation of capacity to metabolize alcohol.