Published in

Elsevier, Behavioural Brain Research, 1-2(113), p. 143-157

DOI: 10.1016/s0166-4328(00)00209-6

Links

Tools

Export citation

Search in Google Scholar

Development of ligands for in vivo imaging of cerebral nicotinic receptors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nicotinic acetylcholine receptors (nAChRs) mediate a variety of brain functions. Findings from postmortem studies and clinical investigations have implicated them in the pathophysiology and treatment of Alzheimer’s and Parkinson’s diseases and other CNS disorders (e.g. Tourette’s syndrome, epilepsy, nicotine dependence). Therefore, it ultimately might be useful to image nAChRs noninvasively for diagnosis, for studies on how changes in nAChRs might contribute to cerebral disorders, for development of therapies targeted at nAChRs, and to monitor the effects of such treatments. To date, only (S)-(−)-nicotine, radiolabeled with 11C, has been used for external imaging of nAChRs in human subjects. Since this radiotracer presents drawbacks, new ligands, with more favorable properties, have been synthesized and tested. Three general classes of compounds, namely, nicotine and its analogs, epibatidine and related compounds, and 3-pyridyl ether compounds, including A-85380, have been evaluated. Analogs of A-85380 appear to be the most promising candidates because of their low toxicity and high selectivity for the α4β2 subtype of nAChRs.