Published in

Springer (part of Springer Nature), Climatic Change, 2(125), p. 281-290

DOI: 10.1007/s10584-014-1175-3

Links

Tools

Export citation

Search in Google Scholar

Response of inland lake dynamics over the Tibetan Plateau to climate change

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The water balance of inland lakes on the Tibetan Plateau (TP) involves complex hydrological processes; their dynamics over recent decades is a good indicator of changes in water cycle under rapid global warming. Based on satellite images and extensive field investigations, we demonstrate that a coherent lake growth on the TP interior (TPI) has occurred since the late 1990s in response to a significant global climate change. Closed lakes on the TPI varied heterogeneously during 1976–1999, but expanded coherently and significantly in both lake area and water depth during 1999–2010. Although the decreased potential evaporation and glacier mass loss may contribute to the lake growth since the late 1990s, the significant water surplus is mainly attributed to increased regional precipitation, which, in turn, may be related to changes in large-scale atmospheric circulation, including the intensified Northern Hemisphere summer monsoon (NHSM) circulation and the poleward shift of the Eastern Asian westerlies jet stream.