Published in

Elsevier, Computers and Geosciences, 11(37), p. 1825-1835, 2011

DOI: 10.1016/j.cageo.2011.04.005

Links

Tools

Export citation

Search in Google Scholar

MWTmat-application of multiscale wavelet tomography on potential fields

Journal article published in 2011 by Guillaume Mauri, Glyn Williams-Jones ORCID, Ginette Saracco
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Wavelet analysis is a well-known technique in the sciences to extract essential information from measured signals. Based on the theory developed by previous studies on the Poisson kernel family, this study presents an open source code, which allows for the determination of the depth of the source responsible for the measured potential field. MWTmat, based on the Matlab platform, does not require the wavelet tool box, is easy to use, and allows the user to select the analyzing wavelets and parameters. The program offers a panel of 10 different wavelets based on the Poisson kernel family and the choice between a fully manual and a semiautomatic mode for selection of lines of extrema. The general equations for both horizontal and vertical derivative wavelets are presented in this study, allowing the user to add new wavelets. Continuous wavelet analyses can be used to efficiently analyze electrical, magnetic, and gravity signals; examples are presented here. The MWTmat code and the multiscale wavelet tomography approach are an efficient method for investigating spatial and temporal changes of sources generating potential field signals.