Published in

Springer (part of Springer Nature), Cancer Immunology, Immunotherapy, 8(59), p. 1273-1284

DOI: 10.1007/s00262-010-0856-7

Links

Tools

Export citation

Search in Google Scholar

Distinct molecular mechanisms leading to deficient expression of ER-resident aminopeptidases in melanoma

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Immune surveillance of tumour cells by CD8(+) cytotoxic T cells plays a key role in the establishment and control of an anti-tumour response. This process requires the generation of antigenic peptides, which are largely produced by the proteasome in combination with other proteases located in either the cytoplasm and/or the endoplasmic reticulum (ER). The ER-resident aminopeptidases ERAP1 and ERAP2 trim or even destroy HLA class I-binding peptides thereby shaping the peptide repertoire presented for T cell recognition. So far there exists limited information about the expression pattern of ERAP1 and/or ERAP2 in human tumours of distinct histotypes. Therefore, the expression profiles and modes of regulation of both aminopeptidases were determined in a large series of melanoma cell lines. A heterogeneous expression ranging from high to reduced or even total loss of ERAP1 and/or ERAP2 mRNA and/or protein expression was detected, which often could be induced/upregulated by interferon-gamma treatment. The observed altered ERAP1 and/or ERAP2 expression and activity levels were either mediated by sequence alterations affecting the promoter or enzymatic activities, leading to either transcriptional and/or post-transcriptional downregulation mechanisms or limited or excessive processing activities, which both might have an impact on the antigenic peptide repertoire presented on HLA class I molecules.