Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical review E: Statistical, nonlinear, and soft matter physics, 3(89)

DOI: 10.1103/physreve.89.032114

Links

Tools

Export citation

Search in Google Scholar

Quantum fluctuation theorems and generalized measurements during the force protocol

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Generalized measurements of an observable performed on a quantum system during a force protocol are investigated and conditions that guarantee the validity of the Jarzynski equality and the Crooks relation are formulated. In agreement with previous studies by M. Campisi, P. Talkner, and P. Hänggi [Phys. Rev. Lett. 105, 140601 (2010); Phys. Rev. E 83, 041114 (2011)], we find that these fluctuation relations are satisfied for projective measurements; however, for generalized measurements special conditions on the operators determining the measurements need to be met. For the Jarzynski equality to hold, the measurement operators of the forward protocol must be normalized in a particular way. The Crooks relation additionally entails that the backward and forward measurement operators depend on each other. Yet, quite some freedom is left as to how the two sets of operators are interrelated. This ambiguity is removed if one considers selective measurements, which are specified by a joint probability density function of work and measurement results of the considered observable. We find that the respective forward and backward joint probabilities satisfy the Crooks relation only if the measurement operators of the forward and backward protocols are the time-reversed adjoints of each other. In this case, the work probability density function conditioned on the measurement result satisfies a modified Crooks relation. The modification appears as a protocol-dependent factor that can be expressed by the information gained by the measurements during the forward and backward protocols. Finally, detailed fluctuation theorems with an arbitrary number of intervening measurements are obtained.