Published in

Oxford University Press (OUP), FEMS Microbiology Ecology, 1(49), p. 83-95

DOI: 10.1016/j.femsec.2003.08.017

Links

Tools

Export citation

Search in Google Scholar

Investigation of virus attenuation mechanisms in a fluvioglacial sand using column experiments

Journal article published in 2004 by Raymond M. Flynn, Pierre Rossi, Daniel Hunkeler
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Virus inactivation and virus adsorption, resulting from interactions with minerals, constitute important aspects of an aquifers disinfection capacity. Investigations using a 20 cm column filled with medium-grained natural sands demonstrated that the sands can attenuate up to 62% of a pulse of viruses injected. Experiments using repeatedly washed sands had significantly lower attenuation capacity than fresh sands, due to removal of fine-grained (silt and clay-sized) coatings on grain surfaces. X-ray diffraction analyses of the sand, and the associated fine-grained coating indicated that no significant mineralogical differences existed between these two materials. The experimental data suggested that rougher surfaces/crystal edges in the grain coatings reduced repulsive forces between viruses and the sands permitting greater virus adsorption to the column matrix. Soaking all sands with Tryptone solution after testing released adsorbed viruses indicated that short-term viral inactivation due to interactions with the column matrix was a negligible part of the attenuation process.