Hindawi, BioMed Research International, (2014), p. 1-12, 2014
DOI: 10.1155/2014/352420
Full text: Download
The present study aimed to evaluate the proteolytic and biological activities of a new metalloproteinase from B. moojeni venom. The purification of BmooMP α -II was carried out through two chromatographic steps (ion-exchange and affinity). BmooMP α -II is a monomeric protein with an apparent molecular mass of 22.5 kDa on SDS-PAGE 14% under nonreducing conditions. The N-terminal sequence (FSPRYIELVVVADHGMFTKYKSNLN) revealed homology with other snake venom metalloproteinases, mainly among P-I class. BmooMP α -II cleaves A α -chain of fibrinogen followed by B β -chain, and does not show any effect on the γ -chain. Its optimum temperature and pH for the fibrinogenolytic activity were 30-50°C and pH 8, respectively. The inhibitory effects of EDTA and 1,10-phenantroline on the fibrinogenolytic activity suggest that BmooMP α -II is a metalloproteinase. This proteinase was devoid of haemorrhagic, coagulant, or anticoagulant activities. BmooMP α -II caused morphological alterations in liver, lung, kidney, and muscle of Swiss mice. The enzymatically active protein yet inhibited collagen, ADP, and ristocetin-induced platelet aggregation in a concentration-dependent manner. Our results suggest that BmooMP α -II contributes to the toxic effect of the envenomation and that more investigations to elucidate the mechanisms of inhibition of platelet aggregation may contribute to the studies of snake venom on thrombotic disorders.