Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Physica E: Low-dimensional Systems and Nanostructures, (74), p. 204-212, 2015

DOI: 10.1016/j.physe.2015.07.002

Links

Tools

Export citation

Search in Google Scholar

The influence of interfaces and intra-band transitions on the band gap of CdS/HgS and GaN/X (X=InN, In0.33Ga0.67N) core/shell/shell quantum dot quantum well – A theoretical study

Journal article published in 2015 by P. Ganesan L. Senthilkumar, L. Senthilkumar ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A theoretical model is presented to calculate the 1s-1s transition energy of an exciton in spherically layered semiconductor quantum-dot quantum-well (QDQW), based on the LCAO variational method using effective mass approximation. The confinement energies of electron and hole and the Coulombic interaction energy between them are calculated for CdS/HgS/CdS, GaN/X/GaN (X=InN, In0.33Ga0.67N) (QDQW) with core/shell/shell structures. The results of the proposed model effectively accommodates the polarization effects at the interfaces of different semiconductor materials in a core/shell/shell structure and elucidates the significant influence of interfaces on the band gap with consistency among previous theoretical and experimental results. The wave function of exciton studied shows significant differences with other theory. The change in the band gap of QDQW is attributed to the exciton excitations by thermal occupation of the lowest dark exciton states at different temperatures. In addition, based on Quantum Confined Stark Effect (QCSE) the effect of high electric field on the charge carriers and the corresponding changes in the band gap has been investigated. The applied electric field provides strong overlap between the electron and hole wave functions as well as increases the binding energy of the exciton, which eventually decreases the band gap.