Published in

Springer, Cell Biochemistry and Biophysics, 2(47), p. 199-208, 2007

DOI: 10.1007/s12013-007-0006-9

Links

Tools

Export citation

Search in Google Scholar

The antiproliferative role of ERG K+ channels in rat osteoblastic cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report on the role of K+ currents in the mechanisms regulating the proliferation of UMR 106-01 osteoblastic osteosarcoma cells. Electrophysiological analysis showed that UMR 106-01 cells produce robust K+ currents that can be pharmacologically separated into two major components: a E-4031-susceptible current, I E-4031, and a tetraethylammonium (TEA)-susceptible component, I TEA. Western blot and RT-PCR analysis showed that I E-4031 is produced by ether a go-go (eag)-related channels (ERG). Incubation of the cells with E-4031 enhanced their proliferation by 80%. Application of E-4031 in the bath solution did not induce instantaneous changes in the membrane resting potential or in the level of cytosolic calcium; however, the cells were slightly depolarized and the calcium content was significantly increased upon prolonged incubation with the compound. Taken together these findings indicate that ERG channels can impair cell proliferation. This is a novel finding that underscores new modes of regulation of mitosis by voltage-gated K+ channels and provides an unexpected insight into the current view of the mechanisms governing bone tissue proliferation.