Effects of a whole-body strength training on metabolic responses and body composition

Full text: Download

Publisher: Springer Verlag (Germany)

Preprint: archiving allowed. Upload

Postprint: archiving allowed. Upload

Published version: archiving forbidden. Upload

Policy details (opens in a new window). Data provided by SHERPA/RoMEO
The aim of this study was to compare the use of transcutaneous vs. motor nerve stimulation in the evaluation of low-frequency fatigue. Nine female and eleven male subjects, all physically active, performed a 30-min downhill run on a motorized treadmill. Knee extensor muscle contractile characteristics were measured before, immediately after (Post), and 30 min after the fatiguing exercise (Post30) by using single twitches and 0.5-s tetani at 20 Hz (P20) and 80 Hz (P80). The P20-to-P80 ratio was calculated. Electrical stimulations were randomly applied either maximally to the femoral nerve or via large surface electrodes (ES) at an intensity sufficient to evoke 50% of maximal voluntary contraction (MVC) during a 80-Hz tetanus. Voluntary activation level was also determined during isometric MVC by the twitch-interpolation technique. Knee extensor MVC and voluntary activation level decreased at all points in time postexercise (P < 0.001). P20 and P80 displayed significant time x gender x stimulation method interactions (P < 0.05 and P < 0.001, respectively). Both stimulation methods detected significant torque reductions at Post and Post30. Overall, ES tended to detect a greater impairment at Post in male and a lesser one in female subjects at both Post and Post30. Interestingly, the P20-P80 ratio relative decrease did not differ between the two methods of stimulation. The low-to-high frequency ratio only demonstrated a significant time effect (P < 0.001). It can be concluded that low-frequency fatigue due to eccentric exercise appears to be accurately assessable by ES.