Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS Computational Biology, 11(11), p. e1004534, 2015

DOI: 10.1371/journal.pcbi.1004534

Links

Tools

Export citation

Search in Google Scholar

Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates

Journal article published in 2015 by Max Hinne, Ronald J. Janssen ORCID, Tom Heskes, Marcel A. J. Van Gerven
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Functional connectivity concerns the correlated activity between neuronal populations in spatially segregated regions of the brain, which may be studied using functional magnetic resonance imaging (fMRI). This coupled activity is conveniently expressed using covariance, but this measure fails to distinguish between direct and indirect effects. A popular alternative that addresses this issue is partial correlation, which regresses out the signal of potentially confounding variables, resulting in a measure that reveals only direct connections. Importantly, provided the data are normally distributed, if two variables are conditionally independent given all other variables, their respective partial correlation is zero. In this paper, we propose a probabilistic generative model that allows us to estimate functional connectivity in terms of both partial correlations and a graph representing conditional independencies. Simulation results show that this methodology is able to outperform the graphical LASSO, which is the de facto standard for estimating partial correlations. Furthermore, we apply the model to estimate functional connectivity for twenty subjects using resting-state fMRI data. Results show that our model provides a richer representation of functional connectivity as compared to considering partial correlations alone. Finally, we demonstrate how our approach can be extended in several ways, for instance to achieve data fusion by informing the conditional independence graph with data from probabilistic tractography. As our Bayesian formulation of functional connectivity provides access to the posterior distribution instead of only to point estimates, we are able to quantify the uncertainty associated with our results. This reveals that while we are able to infer a clear backbone of connectivity in our empirical results, the data are not accurately described by simply looking at the mode of the distribution over connectivity. The implication of this is that deterministic alternatives may misjudge connectivity results by drawing conclusions from noisy and limited data.