Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical Review Letters, 4(110), 2013

DOI: 10.1103/physrevlett.110.044802

Links

Tools

Export citation

Search in Google Scholar

Bright Laser-Driven Neutron Source Based on the Relativistic Transparency of Solids

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Neutrons are unique particles to probe samples in many fields of research ranging from biology to material sciences to engineering and security applications. Access to bright, pulsed sources is currently limited to large accelerator facilities and there has been a growing need for compact sources over the recent years. Short pulse laser driven neutron sources could be a compact and relatively cheap way to produce neutrons with energies in excess of 10 MeV. For more than a decade experiments have tried to obtain neutron numbers sufficient for applications. Our recent experiments demonstrated an ion acceleration mechanism based on the concept of relativistic transparency. Using this new mechanism, we produced an intense beam of high energy (up to 170 MeV) deuterons directed into a Be converter to produce a forward peaked neutron flux with a record yield, on the order of 1010 n/sr. We present results comparing the two acceleration mechanisms and the first short pulse laser generated neutron radiograph.