Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 47(15), p. 20480, 2013

DOI: 10.1039/c3cp53648c

Links

Tools

Export citation

Search in Google Scholar

Thermal decomposition of carboxylate ionic liquids: Trends and mechanisms

Journal article published in 2013 by Matthew T. Clough, Karolin Geyer, Patricia A. Hunt, Jürgen Mertes, Tom Welton
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The thermal stability of a series of dialkylimidazolium carboxylate ionic liquids has been investigated using a broad range of experimental and computational techniques. Ionic liquids incorporating fluoroalkyl carboxylate anions were found to have profoundly differing thermal stabilities and decomposition mechanisms compared with their non-fluorinated analogues. 1-Ethyl-3-methylimidazolium acetate was observed to largely decompose via an SN2 nucleophilic substitution reaction when under inert gas conditions, predominantly at the imidazolium methyl substituent. The Arrhenius equations for thermal decomposition of 1-ethyl-3-methylimidazolium acetate, and the C(2)-methylated analogue 1-ethyl-2,3-dimethylimidazolium acetate, were determined from isothermal Thermogravimetric Analysis experiments. The low thermal stability of 1-ethyl-3-methylimidazolium acetate has important implications for biomass experiments employing this ionic liquid. For these two ionic liquids, ion pair and transition state structures were optimised using Density Functional Theory. The activation barriers for the SN2 nucleophilic substitution mechanisms are in good agreement with the experimentally determined values.