Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Agricultural and Food Chemistry, 16(56), p. 7482-7487, 2008

DOI: 10.1021/jf800715b

Links

Tools

Export citation

Search in Google Scholar

Assessment on the Fermentability of Xylooligosaccharides from Rice Husks by Probiotic Bacteria

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Liquors from rice husk autohydrolysis, containing xylooligosaccharides (XOS), other saccharides, and nonsaccharide compounds, were refined by membrane processing to increase the proportion of substituted XOS in refined liquors. XOS were assayed for composition and degree of polymerization (DP) distribution and hydrolyzed with commercial enzymes for obtaining XOS with DP in the range of 2-6. Nanofiltered, hydrolyzed liquors were subjected to ion exchange processing to yield a final product containing monosaccharides, XOS (accounting for 55.6% of the nonvolatile solutes), and other nonvolatile compounds. The solution obtained after enzymatic hydrolysis with commercial xylanases (in which 82.8% of XOS were in the DP range of 2-6) was examined as a medium for promoting the growth of Bifidobacterium adolescentis CECT 5781, B. longum CECT 4503, B. infantis CECT 4551, and B. breve CECT 4839. The growth rate of B. adolescentis (0.58 h(-1)) was higher than the ones determined for B. longum, B. infantis, and B. breve (0.37, 0.30, and 0.40 h(-1), respectively). The percentage of total XOS consumption by B. adolescentis was 77% after 24 h, the highest percentage of utilization corresponding to xylotriose (90%), followed by xylobiose (84%), xylotetraose (83%), and xylopentaose (71%).