Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Magnetism and Magnetic Materials, (362), p. 204-215

DOI: 10.1016/j.jmmm.2014.02.002

Links

Tools

Export citation

Search in Google Scholar

Thermoelectric, band structure, chemical bonding and dispersion of optical constants of new metal chalcogenides Ba4CuGa5Q12 (Q=S, Se)

Journal article published in 2014 by Sikander Azam ORCID, A. H. Reshak ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The electronic structure and dispersion of optical constants of the Ba4CuGa5S12 and Ba4CuGa5Se12 compounds were calculated by the first-principles full-potential linearized augmented plane wave (FPLAPW) method. We employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel–Vosko GGA (EVGGA) to calculate the electronic structures, Fermi surface, thermoelectric, chemical bonding and dispersion of optical constants of these compounds. By investigating the influence of replacing S by Se, it has been found that the charge density around ‘Ga’ is greater in Ba4CuGa5Se12 than Ba4CuGa5S12. Fermi surface of Ba4CuGa5S12 consists of an electronic sheet only because there is no empty region while Ba4CuGa5Se12 contains both holes and electronic sheets because this compound contains both empty and shaded region. As we replace S by Se the heights of the peaks decreases as a results the reflectivity also decreases. It is noticed that the reflectivity is over 68% (60%) for Ba4CuGa5S12 (Ba4CuGa5Se12) compounds within the energy range studied. This implies that the material will serve as a good reflector. By replacing S by Se the figure of merit values increases from 0.97 to 1.0, which shows the good thermoelectric behavior of both compounds.