Published in

American Association for the Advancement of Science, Science Advances, 8(1), 2015

DOI: 10.1126/sciadv.1500356

Links

Tools

Export citation

Search in Google Scholar

Direct observation of an attosecond electron wave packet in a nitrogen molecule

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Capturing electron motion in a molecule is the basis of understanding or steering chemical reactions. Nonlinear Four-ier transform spectroscopy using an attosecond-pump/attosecond-probe technique is used to observe an attosecond electron wave packet in a nitrogen molecule in real time. The 500-as electronic motion between two bound electronic states in a nitrogen molecule is captured by measuring the fragment ions with the same kinetic energy generated in sequential two-photon dissociative ionization processes. The temporal evolution of electronic coherence originating from various electronic states is visualized via the fragment ions appearing after irradiation of the probe pulse. This observation of an attosecond molecular electron wave packet is a critical step in understanding coupled nuclear and electron motion in polyatomic and biological molecules to explore attochemistry.