Links

Tools

Export citation

Search in Google Scholar

Pleiotropy and pathway analyses of genetic variants associated with both type 2 diabetes and prostate cancer

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Aims: Epidemiological evidence shows that diabetes is associated with a reduced risk of prostate cancer. The objective of this study was to identify genes that may contribute to both type 2 diabetes and prostate cancer outcomes and the biological pathways these diseases may share. Methods: The Atherosclerosis Risk in Communities (ARIC) Study is a population-based prospective cohort study in four U.S. communities that included a baseline examination in 1987-89 and three follow-up exams at three year intervals. Participants were 45-64 years old at baseline. We conducted a genomewide association (GWA) study of incident type 2 diabetes in males, summarized variation across genetic loci into a polygenic risk score, and determined if that diabetes risk score was also associated with incident prostate cancer in the same study population. Secondarily we conducted a separate GWA study of prostate cancer, performed a pathway analysis of both type 2 diabetes and prostate cancer, and qualitatively determined if any of the biochemical pathways identified were shared between the two outcomes. Results: We found that the polygenic risk score for type 2 diabetes was not statistically significantly associated with prostate cancer. The pathway analysis also found no overlap between pathways associated with type 2 diabetes and prostate cancer. However, it did find that the growth hormone signaling pathway was statistically significantly associated with type 2 diabetes (p=0.0001). Conclusion: The inability of this study to find an association between type 2 diabetes polygenic risk scores with prostate cancer or biological pathways in common suggests that shared genetic variants may not contribute significantly to explaining shared etiology.