Published in

Society for Neuroscience, Journal of Neuroscience, 48(32), p. 17197-17210, 2012

DOI: 10.1523/jneurosci.4127-12.2012

Links

Tools

Export citation

Search in Google Scholar

Numb is Required for the Production of Terminal Asymmetric Cell Divisions in the Developing Mouse Retina

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

In the developing nervous system, cell diversification depends on the ability of neural progenitor cells to divide asymmetrically to generate daughter cells that acquire different identities. While much work has recently focused on the mechanisms controlling self-renewing asymmetric divisions producing a differentiating daughter and a progenitor, little is known about mechanisms regulating how distinct differentiating cell types are produced at terminal divisions. Here we study the role of the endocytic adaptor protein Numb in the developing mouse retina. Using clonal numb inactivation in retinal progenitor cells (RPCs), we show that Numb is required for normal cell-cycle progression at early stages, but is dispensable for the production of self-renewing asymmetric cell divisions. At late stages, however, Numb is no longer required for cell-cycle progression, but is critical for the production of terminal asymmetric cell divisions. In the absence of Numb, asymmetric terminal divisions that generate a photoreceptor and a non-photoreceptor cell are decreased in favor of symmetric terminal divisions generating two photoreceptors. Using live imaging in retinal explants, we show that a Numb fusion protein is asymmetrically inherited by the daughter cells of some late RPC divisions. Together with our finding that Numb antagonizes Notch signaling in late-stage RPCs, and that blocking Notch signaling in late RPCs almost completely abolishes the generation of terminal asymmetric divisions, these results suggest a model in which asymmetric inheritance of Numb in sister cells of terminal divisions might create unequal Notch activity, which in turn drives the production of terminal asymmetric divisions.