Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Pattern Recognition, 1(44), p. 55-69

DOI: 10.1016/j.patcog.2010.07.024

Links

Tools

Export citation

Search in Google Scholar

Clustering ellipses for anomaly detection

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Comparing, clustering and merging ellipsoids are problems that arise in various applications, e.g., anomaly detection in wireless sensor networks and motif-based patterned fabrics. We develop a theory underlying three measures of similarity that can be used to find groups of similar ellipsoids in p-space. Clusters of ellipsoids are suggested by dark blocks along the diagonal of a reordered dissimilarity image (RDI). The RDI is built with the recursive iVAT algorithm using any of the three (dis) similarity measures as input and performs two functions: (i) it is used to visually assess and estimate the number of possible clusters in the data; and (ii) it offers a means for comparing the three similarity measures. Finally, we apply the single linkage and CLODD clustering algorithms to three two-dimensional data sets using each of the three dissimilarity matrices as input. Two data sets are synthetic, and the third is a set of real WSN data that has one known second order node anomaly. We conclude that focal distance is the best measure of elliptical similarity, iVAT images are a reliable basis for estimating cluster structures in sets of ellipsoids, and single linkage can successfully extract the indicated clusters.