Published in

Elsevier, Biochemical Engineering Journal, (73), p. 72-79, 2013

DOI: 10.1016/j.bej.2013.01.017

Links

Tools

Export citation

Search in Google Scholar

A surfactant-coated lipase immobilized in magnetic nanoparticles for multicycle ethyl isovalerate enzymatic production

Journal article published in 2013 by Iram Mahmood, Ishfaq Ahmad, Guo Chen, Liu Huizhou
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Gum arabic coated magnetic Fe3O4 nanoparticles (GAMNP) were prepared by chemical co-precipitation method and their surface morphology, particle size and presence of polymer-coating was confirmed by various measurements, including transmission electron microscopy (TEM), X-ray diffraction (XRD), thermo gravimetric analysis (TGA), and Fourier transform infra red (FTIR) analysis. Magnetic particles were employed for their potential application as a support material for lipase immobilization. Glutaraldehyde was used as a coupling agent for efficient binding of lipase onto the magnetic carrier. For this purpose, the surface of a Candida rugosa lipase was initially coated with various surfactants, to stabilize enzyme in its open form, and then immobilized on to the support. This immobilized system was used as a biocatalyst for ethyl isovalerate, a flavor ester, production. The influence of various factors such as type of surfactant, optimum temperature and pH requirement, organic solvent used, amount of surfactant in coating lipase and effect of enzyme loadings on the esterification reaction were systematically studied. Different surfactants were used amongst which non-ionic surfactant performed better, showing about 80% esterification yield in 48 h as compared to cationic/anionic surfactants. Enhanced activity due to interfacial activation was observed for immobilized non-ionic surfactant–lipase complex. The immobilized surfactant coated lipase activity was retained after reusing seven times.