Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical Review Letters, 7(108)

DOI: 10.1103/physrevlett.108.077201

Links

Tools

Export citation

Search in Google Scholar

Disentangling the Physical Contributions to the Electrical Resistance in Magnetic Domain Walls: A Multiscale Study

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We analyze the origin of the electrical resistance arising in domain walls of perpendicularly magnetized materials by considering a superposition of anisotropic magnetoresistance and the resistance implied by the magnetization chirality. The domain wall profiles of L1(0)-FePd and L1(0)-FePt are determined by micromagnetic simulations based on which we perform first-principles calculations to quantify electron transport through the core and closure region of the walls. The wall resistance, being twice as high in L1(0)-FePd than in L1(0)-FePt, is found to be clearly dominated in both cases by a high gradient of magnetization rotation, which agrees well with experimental observations.