Published in

American Physiological Society, Journal of Neurophysiology, 7(113), p. 2408-2419

DOI: 10.1152/jn.00167.2014

Links

Tools

Export citation

Search in Google Scholar

Presynaptic cholinergic neuromodulation alters short-term depression at parvalbumin-positive basket cell synapses from juvenile CA1 mouse hippocampus.

Journal article published in 2015 by J. Josh Lawrence, Heikki Haario, Emily F. Stone
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Parvalbumin-positive basket cells (PV BCs) of the CA1 hippocampus are active participants in theta (5–12 Hz) and gamma (20–80 Hz) oscillations in vivo. When PV BCs are driven at these frequencies in vitro, inhibitory postsynaptic currents (IPSCs) in synaptically connected CA1 pyramidal cells exhibit paired-pulse depression (PPD) and multiple-pulse depression (MPD). Moreover, PV BCs express presynaptic muscarinic acetylcholine receptors (mAChRs) that may be activated by synaptically released acetylcholine during learning behaviors in vivo. Using acute hippocampal slices from the CA1 hippocampus of juvenile PV-GFP mice, we performed whole cell recordings from synaptically connected PV BC-CA1 pyramidal cell pairs to investigate how bath application of 10 μM muscarine impacts PPD and MPD at CA1 PV BC-pyramidal cell synapses. In accordance with previous studies, PPD and MPD magnitude increased with stimulation frequency. mAChR activation reduced IPSC amplitude and transiently reduced PPD, but MPD was largely maintained. Consistent with a reduction in release probability ( pr), MPD and mAChR activation increased both the coefficient of variation of IPSC amplitudes and the fraction of failures. Using variance-mean analysis, we converted MPD trains to pr functions and developed a kinetic model that optimally fit six distinct pr conditions. The model revealed that vesicular depletion caused MPD and that recovery from depression was dependent on calcium. mAChR activation reduced the presynaptic calcium transient fourfold and initial pr twofold, thereby reducing PPD. However, mAChR activation slowed calcium-dependent recovery from depression during sustained repetitive activity, thereby preserving MPD. Thus the activation of presynaptic mAChRs optimally protects PV BCs from vesicular depletion during short bursts of high-frequency activity.