Published in

Elsevier, Transactions of Nonferrous Metals Society of China, 6(19), p. 1400-1404, 2009

DOI: 10.1016/s1003-6326(09)60040-6

Links

Tools

Export citation

Search in Google Scholar

Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites

Journal article published in 2009 by Min Song ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

SiC particle reinforced pure aluminum composites were fabricated using a powder metallurgy method. The effect of the volume fraction of the SiC particles on the mechanical properties of the composites was studied by both model simulation and experiment. The results indicate that the yield strength and tensile strength increase, but the elongation decreases with the increase in the volume fraction of the SiC particles. Both the modified shear lag model and the multi-scale model predicted yield strength and normalized elongation show similar evolution trends with the experimental data. However, the modified shear lag model underestimates the yield strength due to the ignorance of the strengthening mechanisms caused by grain refinement and dislocations interaction by the introduction of the SiC particles, and the multi-scale model overestimates the normalized elongation due to the ignorance of the pores distributed in the matrix.