Published in

Wiley, Photochemistry and Photobiology, 1(89), p. 139-149, 2012

DOI: 10.1111/j.1751-1097.2012.01204.x

Links

Tools

Export citation

Search in Google Scholar

Fully Protected Glycosylated Zinc (II) Phthalocyanine Shows High Uptake and Photodynamic Cytotoxicity in MCF-7 Cancer Cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Phthalocyanine photosensitizers are effective in anticancer photodynamic therapy (PDT) but suffer from limited solubility, limited cellular uptake and limited selectivity for cancer cells. To improve these characteristics, we synthesized isopropylidene-protected and partially deprotected tetra β-glycosylated zinc (II) phthalocyanines and compared their uptake and accumulation kinetics, subcellular localization, in vitro photocytotoxicity and reactive oxygen species generation with those of disulfonated aluminum phthalocyanine. In MCF-7 cancer cells, one of the compounds, zinc phthalocyanine {4}, demonstrated 10-fold higher uptake, 5-fold greater PDT-induced cellular reactive oxygen species concentration and 2-fold greater phototoxicity than equimolar (9 μm) disulfonated aluminum phthalocyanine. Thus, isopropylidene-protected β-glycosylation of phthalocyanines provides a simple method of improving the efficacy of PDT.