Published in

Elsevier, The American Journal of Pathology, 3(183), p. 655-660, 2013

DOI: 10.1016/j.ajpath.2013.06.002

Links

Tools

Export citation

Search in Google Scholar

Similarities between Inherited Demyelinating Neuropathies and Wallerian Degeneration An Old Repair Program May Cause Myelin and Axon Perturbation under Non lesion Conditions

Journal article published in 2013 by Rudolf Martini, Dennis Klein, Janos Groh
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Wallerian degeneration (WD) and inherited demyelinating neuropathies of the Charcot-Marie-Tooth type 1 (CMT1) appear to represent completely distinct events. CMT1-like diseases are chronic disorders of peripheral nerves that are genetically caused and lead to secondary neurodegenerative events, resulting in usually non-treatable disabilities, whereas WD is an acute, usually transient, reaction on injuries, aiming to allow peripheral nerve regeneration. Despite these differences, there are some striking similarities regarding molecular characteristics of neural cells in the affected peripheral nerves. The most conspicuous similarities might comprise the inflammatory component in both situations, as identified in appropriate mouse models. However, although inflammation is a beneficial component in WD, leading to removal of regrowth-repellent myelin debris, inflammation in CMT1 mouse models causes damage of initially intact nerve fibers. We hypothesize that, in CMT1 models, molecular pathways are activated that are shared with an important repair program after peripheral nerve injury, but lead to neural perturbation when activated under nonlesion conditions, as is the case in CMT1. These novel insights into the pathogenesis of CMT1 might be instrumental for the development of new therapeutic options in humans.