Published in

Elsevier, Chemical Physics, 1-3(360), p. 85-96

DOI: 10.1016/j.chemphys.2009.04.014

Links

Tools

Export citation

Search in Google Scholar

Singlet oxygen generation in PUVA therapy studied using electronic structure calculations

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The ability of furocoumarins to participate in the PUVA (Psoralen+UV-A) therapy against skin disorders and some types of cancer, is analyzed on quantum chemical grounds. The efficiency of the process relies on its capability to populate its lowest triplet excited state, and then either form adducts with thymine which interfere DNA replication or transfer its energy, generating singlet molecular oxygen damaging the cell membrane in photoactivated tissues. By determining the spin–orbit couplings, shown to be the key property, in the intersystem crossing yielding the triplet state of the furocoumarin, the electronic couplings in the triplet–triplet energy transfer process producing the singlet oxygen, and the reaction rates and lifetimes, the efficiency in the phototherapeutic action of the furocoumarin family is predicted as: khellin