Published in

Elsevier, Inorganica Chimica Acta, (435), p. 274-282

DOI: 10.1016/j.ica.2015.07.009

Links

Tools

Export citation

Search in Google Scholar

A family of nickel-lanthanide heterometallic dinuclear complexes derived from a chiral Schiff-base ligand exhibiting single-molecule magnet behaviors

Journal article published in 2015 by He-Rui Wen, Sui-Jun Liu ORCID, Xin-Rong Xie, Jun Bao, Cai-Ming Liu ORCID, Jing-Lin Chen
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A new family of nickel-lanthanide heterometallic dinuclear complexes derived from a chiral Schiff-base ligand, (R,R)-N,N′-bis(3-methoxysalicylidene)cyclohexane-1,2-diamine (H2L), namely [Ni(L)Ln(NO3)3(H2O)] (Ln = Ce (1), Nd (2)) and [Ni(L)Ln(NO3)3] (Ln = Sm (3), Eu (4), Gd (5), Tb (6), Dy (7) and Yb (8)) have been synthesized and structurally characterized. X-ray single-crystal structure determination revealed that these complexes are diphenoxo-bridged NiII-LnIII dinuclear clusters, which crystallize in the chiral space group P1. The solid circular dichroism (CD) spectra confirmed the optical activity and enantiomorphous properties of all these complexes. Magnetic investigations suggested that crystal-field effects and/or the possible antiferromagnetic dipole–dipole interaction between the molecules exist in the complexes and single-ion properties of LnIII ions lead to their magnetic behaviors. The alternating current (ac) magnetic susceptibilities showed that complexes 6 and 7 exhibit field-induced single-molecule magnet behaviors due to the strong anisotropy and important crystal-field effect of the TbIII or DyIII ions. It is noteworthy that the quantum tunneling effect at low temperatures can be effectively suppressed by employing a 2 kOe direct current field.