Dissemin is shutting down on January 1st, 2025

Published in

Bentham Open, Open Pain Journal, 1(3), p. 82-96

DOI: 10.2174/1876386301003010082

Links

Tools

Export citation

Search in Google Scholar

Sensitisation of Nociceptors – What are Ion Channels Doing?

Journal article published in 2010 by Michael J. M. Fischer ORCID, Stephanie W. Y. Mak, Peter A. McNaughton
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Nociceptors are peripheral sensory neurones which respond to painful (noxious) stimuli. The terminals of nociceptors, which have a high threshold to stimulation in their native state, undergo a process known as sensitisation, or lowering of threshold, following injury or inflammation. Amongst sensory receptors, sensitisation is a property unique to nociceptors. A shift in the stimulus-response function of nociceptors renders them more sensitive, resulting in both a reduction in the activation threshold, such that previously non-noxious stimuli are perceived as noxious (allodynia) and an increased response to suprathreshold stimuli (hyperalgesia). Sensitisation protects us from harm and is essential for survival, but it can be disabling in conditions of chronic inflammation. This review focuses on three stages in sensitisation: 1) Inflammatory mediators, which are released from damaged resident cells and from others that invade in response to inflammation, and include bradykinin, prostaglandins, serotonin, low pH, ATP, neurotrophins, nitric oxide and cytokines; 2) Intracellular signalling molecules which are important in transmitting the actions of inflammatory mediators and include protein kinase A and C, Src kinase, mitogen-activated protein kinases and the membrane lipid PIP2; and 3) Ion channel targets of intracellular signalling which ultimately cause sensitisation and include the temperaturesensitive transient receptor potential channels, acid-sensitive ion channels, purinoceptor-gated channels, and the voltagesensitive sodium, potassium, calcium and HCN channels.