Published in

Wiley, ChemBioChem, 10(12), p. 1595-1601, 2011

DOI: 10.1002/cbic.201100010

Links

Tools

Export citation

Search in Google Scholar

SeSaM-Tv-II Generates a Protein Sequence Space that is Unobtainable by epPCR

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Generating high-quality mutant libraries in which each amino acid is equally targeted and substituted in a chemically diverse manner is crucial to obtain improved variants in small mutant libraries. The sequence saturation mutagenesis method (SeSaM-Tv(+) ) offers the opportunity to generate such high-quality mutant libraries by introducing consecutive mutations and by enriching transversions. In this study, automated gel electrophoresis, real-time quantitative PCR, and a phosphorimager quantification system were developed and employed to optimize each step of previously reported SeSaM-Tv(+) method. Advancements of the SeSaM-Tv(+) protocol and the use of a novel DNA polymerase quadrupled the number of transversions, by doubling the fraction of consecutive mutations (from 16.7 to 37.1 %). About 33 % of all amino acid substitutions observed in a model library are rarely introduced by epPCR methods, and around 10 % of all clones carried amino acid substitutions that are unobtainable by epPCR.