Published in

Frontiers Media, Frontiers in Neurology, (6), 2015

DOI: 10.3389/fneur.2015.00181

Links

Tools

Export citation

Search in Google Scholar

Central Nervous System and Peripheral Inflammatory Processes in Alzheimer’s Disease: Biomarker Profiling Approach

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Brain inflammation is one of the hallmarks of Alzheimer disease (AD) and a current trend is that inflammatory mediators, particularly cytokines and chemokines, may represent valuable biomarkers for early screening and diagnosis of the disease. Various studies have reported differences in serum level of cytokines, chemokines, and growth factors in patients with mild cognitive impairment or AD. However, data were often inconsistent and the exact function of inflammation in neurodegeneration is still a matter of debate. In the present work, we measured the expression of 120 biomarkers (corresponding to cytokines, chemokines, growth factors, and related signaling proteins) in the serum of 49 patients with the following diagnosis distribution: 15 controls, 14 AD, and 20 MCI. In addition, we performed the same analysis in the cerebrospinal fluid (CSF) of 20 of these patients (10 AD and 10 controls). Among the biomarkers tested, none showed significant changes in the serum, but 13 were significantly modified in the CSF of AD patients. Interestingly, all of these biomarkers were implicated in neurogenesis or neural stem cells migration and differentiation. In the second part of the study, 10 of these putative biomarkers (plus 4 additional) were quantified using quantitative multiplex ELISA methods in the CSF and the serum of an enlarged cohort composed of 31 AD and 24 control patients. Our results confirm the potential diagnosis interest of previously published blood biomarkers, and proposes new ones (such as IL-8 and TNFR-I). Further studies will be needed to validate these biomarkers which could be used alone, combined, or in association with the classical amyloid and tau biomarkers.