Published in

The Company of Biologists, Journal of Cell Science, 7(121), p. 1046-1053, 2008

DOI: 10.1242/jcs.019372

Links

Tools

Export citation

Search in Google Scholar

Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Telomerase is a ribonucleoprotein that counteracts telomere shortening and can immortalise human cells. There is also evidence for a telomere-independent survival function of telomerase. However, its mechanism is not understood. We show here that TERT, the catalytic subunit of human telomerase, protects human fibroblasts against oxidative stress. While TERT maintains telomere length under standard conditions, telomeres under increased stress shorten as fast as in cells without active telomerase. This is because TERT is reversibly excluded from the nucleus under stress in a dose- and time-dependent manner. Extranuclear telomerase colocalises with mitochondria. In TERT-overexpressing cells, mtDNA is protected, mitochondrial membrane potential is increased and mitochondrial superoxide production and cell peroxide levels are decreased, all indicating improved mitochondrial function and diminished retrograde response. We propose protection of mitochondria under mild stress as a novel function of TERT.