Published in

SpringerOpen, Nanoscale Research Letters, 1(6), 2011

DOI: 10.1186/1556-276x-6-535

Links

Tools

Export citation

Search in Google Scholar

Photoelectrochemical studies of DNA-tagged biomolecules on Au and Au/Ni/Au multilayer nanowires

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe use of nanowires (NWs) for labeling, sensing, and sorting is the basis of detecting biomolecules attached on NWs by optical and magnetic properties. In spite of many advantages, the use of biomolecules-attached NWs sensing by photoelectrochemical (PEC) study is almost non-existent. In this article, the PEC study of dye-attached single-stranded DNA on Au NWs and Au-Ni-Au multilayer NWs prepared by pulse electrodeposition are investigated. Owing to quantum-quenching effect, the multilayer Au NWs exhibit low optical absorbance when compared with Au NWs. The tagged Au NWs show good fluorescence (emission) at 570 nm, indicating significant improvement in the reflectivity. Optimum results obtained for tagged Au NWs attached on functionalized carbon electrodes and its PEC behavior is also presented. A twofold enhancement in photocurrent is observed with an average dark current of 10 μA for Au NWs coated on functionalized sensing electrode. The importance of these PEC and optical studies provides an inexpensive and facile processing platform for Au NWs that may be suitable for biolabeling applications.