Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of The American Society for Mass Spectrometry, 8(19), p. 1221-1229, 2008

DOI: 10.1016/j.jasms.2008.05.009

Links

Tools

Export citation

Search in Google Scholar

Hydrolytic and photoinduced degradation of tribenuron methyl studied by HPLC-DAD-MS/MS

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The paper studies, with the help of HPLC-DAD-MS/MS technique, the hydrolytic and photoinduced degradation processes that take place in aqueous solutions of tribenuron methyl, both when preserved in the dark and when undergoing solar box irradiation under conditions that simulate sun light. The results indicate that the degradation products formed by hydrolysis alone and by photoirradiation are the same, but kinetics of the hydrolysis reaction is much slower. The degradation products are identified as 2-methoxy-4-methylamino-6-methyl-1,3,5-triazine (P1), methyl 2-aminosulfonylbenzoate (P2), and saccharin (P3) and quantified. Ecotoxicological biotests performed on 0.1 microg L(-1) photoirradiated solutions of the herbicide give a border line toxicity situation comparable to that of the precursor and indicate that the herbicide is characterized by low persistence in the environment, as required. Its degradation, however, does not lead to mineralization but to the formation of products of comparable toxicity. To evaluate the matrix effects, the photodegradation of the herbicide is also studied in the presence of rice paddy waters: the process is slower than in ultrapure water but leads to the same products. Experiments performed for comparison by irradiating ultrapure water solutions with UV lamp (254 nm) show that the degradation process is not only faster with respect to sunlight, but gives a different pathway, without in anyway leading to mineralization.