Published in

SAGE Publications, American Journal of Sports Medicine, 12(42), p. 2869-2876, 2014

DOI: 10.1177/0363546514545856

Links

Tools

Export citation

Search in Google Scholar

Statins enhance rotator cuff healing by stimulating the COX2/PGE2/EP4 pathway: An in vivo and in vitro study

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Statins are lipid-lowering drugs with many beneficial pleiotropic effects. Cyclooxygenase (COX2) selective inhibitors that are commonly prescribed in orthopaedic patients may effect healing. Evidence indicates that statins stimulate COX2 activity. Hypothesis: Atorvastatin (ATV) administration will enhance tendon healing by stimulating the acute inflammatory phase via increasing the production of prostaglandin E2 (PGE2). Study Design: Controlled laboratory study. Methods: After experimental rotator cuff (RC) tearing and suturing, 48 Wistar rats were randomly allocated into 4 groups: (1) ATV (20 mg/kg), (2) celecoxib (CEL; COX2 inhibitor) (10 mg/kg), (3) ATV + CEL (20 mg/kg + 10 mg/kg), and (4) saline alone. Animals were sacrificed 3 weeks after RC tears and repair, and tendon integrity was tested biomechanically in tension. To further evaluate the underlying mechanism of action, human and rat primary tenocytes were obtained from the supraspinatus tendon. Cultures were treated with a therapeutic dosage of 5 commonly used statins: CEL, ATV + CEL, PGE2, and a selective antagonist of PGE2 receptor 4 (EP4). Cell proliferation (thymidine incorporation), migration (wound healing assay), and adhesion (iCELLigence) were evaluated. The expression of all PGE2 receptors (EPs) was determined by quantitative reverse transcription polymerase chain reaction. Results: Tension testing of healed tendons demonstrated significantly higher maximal loading and stiffness in the ATV group as compared with the saline (+30% and +20%, respectively; P < .001) and CEL groups (+33% and +50%, respectively; P < .005). Celecoxib alone did not affect tendon healing ( P = .88). In line with these in vivo results, tenocytes treated with statins demonstrated significantly higher proliferation rates; CEL abrogated this effect, and PGE2 treatment stimulated tenocyte proliferation even in the presence of CEL. Also, ATV stimulated the migration (wound healing) and adhesion of tenocytes. Among all PGE2 receptors, tenocytes mainly express EP4, and an EP4 selective antagonist blocked the effect of ATV. Conclusion: Results indicate that ATV enhances tendon healing by stimulating tenocyte proliferation, migration, and adhesion via increased COX2 activity and autocrine/paracrine PGE2 signaling. Findings also demonstrate that this effect is mediated by EP4 signaling. Clinical Relevance: Although chronic inflammation contributes to the development of tendinopathy, study results advocate for a positive role of PGE2 in tendon healing during the acute inflammatory phase that follows tendon surgical repair. It is therefore suggested that ATV should be further investigated as a possible modality to improve tendon healing.