Dissemin is shutting down on January 1st, 2025

Published in

Sociedade Brasileira de Zootecnia, Revista Brasileira de Zootecnia, spe(38), p. 72-80, 2009

DOI: 10.1590/s1516-35982009001300009

Links

Tools

Export citation

Search in Google Scholar

Modelos hierárquicos bayesianos para estimação robusta e análise de dados censurados em melhoramento animal

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Dados extremos influenciados por fatores não considerados no modelo estatístico, podem enviesar as estimativas dos parâmetros e valores genéticos. Além disso, diversas características de importância econômica não seguem uma distribuição normal ou apresentam dados censurados. O objetivo deste trabalho é descrever e ilustrar a aplicação de modelos hierárquicos bayesianos para a detecção e mitigação de dados extremos e para análise de dados censurados. Primeiro, é apresentada a especificação tradicional do modelo animal em estágios hierárquicos sob o enfoque bayesiano, para dados não censurados com distribuição Normal. A seguir, esse modelo é generalizado pela introdução de uma variável de ponderação independente, que permite a especificação de densidades residuais de caudas longas da família de distribuições Normal/independente. Finalmente, para contemplar a análise de dados censurados, o modelo básico é ampliado pela inclusão de uma variável com distribuição normal truncada no limite inferior do valor observado da característica no momento da avaliação, para aqueles animais que ainda não completaram sua vida reprodutiva no momento da avaliação.