Published in

BioScientifica, Reproduction, 4(147), p. 529-535, 2014

DOI: 10.1530/rep-13-0435

Links

Tools

Export citation

Search in Google Scholar

Serum levels of insulin-like factor 3, anti-Müllerian hormone, inhibin B, and testosterone during pubertal transition in healthy boys: a longitudinal pilot study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Insulin-like factor 3 (INSL3) is a promising marker of Leydig cell function with potentially high clinical relevance. Limited data of INSL3 levels in relation to other reproductive hormones in healthy pubertal boys exist. In this study, we aimed to evaluate longitudinal serum changes in INSL3 compared with LH, FSH, testosterone, inhibin B, and anti-Müllerian hormone (AMH) during puberty in healthy boys. Ten boys were included from the longitudinal part of the COPENHAGEN Puberty Study. Pubertal evaluation, including testicular volume, was performed and blood samples were drawn every 6 months for 5 years. Serum concentrations of testosterone were determined by a newly developed LC–MS/MS method, and serum concentrations of INSL3, AMH, inhibin B, FSH, and LH respectively were determined by validated immunoassays. The results showed that serum INSL3 levels increased progressively with increasing age, pubertal onset, and testicular volume. In six of the ten boys, LH increased before the first observed increase in INSL3. In the remaining four boys, the increase in LH and INSL3 was observed at the same examination. The increases in serum concentrations of LH, testosterone, and INSL3 were not parallel or in ordered succession and varied interindividually. We demonstrated that INSL3 concentrations were tightly associated with pubertal onset and increasing testicular volume. However, the pubertal increases in LH, INSL3, and testosterone concentrations were not entirely parallel, suggesting that INSL3 and testosterone may be regulated differently. Thus, we speculate that INSL3 provides additional information on Leydig cell differentiation and function during puberty compared with traditional markers of testicular function.