Published in

Springer, Urban Ecosystems, 4(15), p. 1015-1030, 2012

DOI: 10.1007/s11252-012-0239-2

Links

Tools

Export citation

Search in Google Scholar

Potential impacts of emerald ash borer invasion on biogeochemical and water cycling in residential landscapes across a metropolitan region

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Trees provide important ecological services in cities, yet the vulnerability of the urban forest to massive tree losses from pest outbreaks could threaten those services, with unknown environmental consequences. The outbreak of emerald ash borer is an imminent threat to the ash population in North America. In the Minneapolis–Saint Paul, Minnesota, metropolitan area, ash trees are present in 50 % of residential landscapes in Ramsey and Anoka Counties. We used a large survey of household activities, a tree inventory, a Household Flux Calculator accounting tool, and a set of annual evapotranspiration measure-ments, to quantify the current carbon, nitrogen, and phosphorus storage in ash trees, the cycling of these elements, and the total evapotranspiration from ash trees in residential areas in the metropolitan region. Ash represented 6 % of the trees in residential areas and the removal of the entire ash population would correspondingly reduce net primary production and carbon sequestration by only a few percent and would have negligible effects on losses of nitrogen and phosphorus from residential landscapes. Similarly, the effects of ash loss on