Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 31(17), p. 20154-20159

DOI: 10.1039/c5cp03498a

Links

Tools

Export citation

Search in Google Scholar

Facile synthesis of S, N co-doped carbon dots and investigation of their photoluminescence properties

Journal article published in 2015 by Yue Zhang, Junhui He
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A facile one-pot approach to prepare photoluminescent carbon dots (CDs) was developed through hydrothermal treatment of cysteine and citric acid. The obtained CDs show stable and bright blue emission with a quantum yield of 54% and an average lifetime of 11.61 ns. Moreover, the two-photon induced upconversion fluorescence of the CDs was observed and demonstrated. Interestingly, both down and up conversion fluorescence of the CDs show excitation-independent emission, which is quite different from most of the previously reported CDs. Ultrafast spectroscopy was also employed here to study the photoluminescence (PL) properties of the CDs. After characterization using various spectroscopic techniques, a unique PL mechanism for the as-prepared CDs' fluorescence was proposed accordingly. In addition, the influence of various metal ions on the CD fluorescence was examined and no quenching phenomena were observed. Meanwhile, gold nanoparticles (Au NPs) were found to be good quenchers of CD fluorescence and their quenching behavior was fitted to the Stern-Volmer equation. This provides new opportunities for fluorescence sensor designs and light energy conversion applications. Finally, the as-prepared CDs were inkjet-printed to form a desirable pattern, which is useful for fluorescent patterns, and anti-counterfeiting labeling.