Published in

Wiley, Protein Science, 5(1), p. 625-640, 1992

DOI: 10.1002/pro.5560010509

Links

Tools

Export citation

Search in Google Scholar

Assembly of polypeptide an protein backbone conformations from low energy ensembles of short fragments. Development of strategies and construction of models for myoglobin, lysozyme and thymosin β4

Journal article published in 1992 by Manfred J. Sippl, Manfred Hendlich, Peter Lackner
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recently we developed methods for the construction of knowledge-based mean fields from a data base of known protein structures. As shown previously, this approach can be used to calculate ensembles of probable conformations for short fragments of polypeptide chains. Here we develop procedures for the assembly of short fragments to complete three-dimensional models of polypeptide chains. The amino acid sequence of a given protein is decomposed into all possible overlapping fragments of a given length, and an ensemble of probable conformations is calculated for each fragment. The fragments are assembled to a complete model by choosing appropriate conformations from the individual ensembles and by averaging over equivalent angles. Finally a consistent model is obtained by rebuilding the conformation from the average angles. From the average angles the local variability of the structure can be calculated, which is a useful criterion for the reliability of the model. The procedure is applied to the calculation of the local backbone conformations of myoglobin and lysozyme whose structures have been solved by X-ray analysis and thymosin beta 4, a polypeptide of 43 amino acid residues whose structure was recently investigated by NMR spectroscopy. We demonstrate that substantial fractions of the calculated local backbone conformations are similar to the experimentally determined structures.