Published in

Springer Verlag, Ionics, 9(21), p. 2623-2631

DOI: 10.1007/s11581-015-1444-9

Links

Tools

Export citation

Search in Google Scholar

NiO hybrid nanoarchitecture-based pseudocapacitor in organic electrolyte with high rate capability and cycle life

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A 3D hierarchical NiO nanostructures with combined microstructure of nanoflakes and nanoflowers have been fabricated on carbon fibre cloth (CFC). Unique nano-micro structural features of NiO/CFC electrode showed an enhanced electrochemical activity in organic electrolyte (1 M tetraethylammonium tetrafluorborate (TEABF4) in propylene carbonate) in terms of rate capability, specific energy and power performance as well as potential limit. The electrode showed a specific capacitance of 170 Fg−1 for a current density of 5 Ag−1. Configured as a two-electrode symmetric supercapacitor, the device showed a specific capacitance of 34.9 Fg−1 at 1 Ag−1 current density. It delivered a maximum specific energy density of 19.4 Wh kg−1 at a high power density of 1002.8 W kg−1 at a constant current density of 1 Ag−1. The cell is also capable of long-term cycling stability with an efficiency of 58 % after 25,000 cycles with a potential window of 0 to ±2 V. This superior electrochemical activity of the NiO electrode is due to their structural benefits of well-connected hybrid nano/mesoporous structure and rapid ion intercalation within the porous electrode surface.