Published in

American Institute of Physics, Journal of Rheology, 6(59), p. 1377-1395

DOI: 10.1122/1.4931655

Links

Tools

Export citation

Search in Google Scholar

Microstructure and rheology of soft to rigid shear-thickening colloidal suspensions

Journal article published in 2015 by Safa Jamali ORCID, Arman Boromand, Norman Wagner, Joao Maia
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The shear rate-dependent rheological properties of soft to rigid colloidal suspensions are studied using computational models. We show that a contact force defined based on an elasto-hydrodynamic deformation theory captures an important rheological behavior of colloidal suspensions: While near hard-sphere particles exhibit a strong and continuous shear thickening the evolves to a constant viscosity state, soft suspensions undergo a second shear-thinning regime at high Péclet numbers when the hydrodynamic stresses become larger than the modulus of the colloidal particles. We measure N1 and N2 to be large and negative in the shear-thickening regime; however, for soft spheres at the onset of second shear-thinning N2 reduces in magnitude and eventually becomes positive. We show that for near hard-sphere suspensions, colloidal pressure, shear stress, and normal stress difference coefficients tend to diverge near the maximum packing fraction while P>σ>N1>N2.